Message-passing algorithms for the prediction of protein domain interactions from protein-protein interaction data
نویسندگان
چکیده
MOTIVATION Cellular processes often hinge upon specific interactions among proteins, and knowledge of these processes at a system level constitutes a major goal of proteomics. In particular, a greater understanding of protein-protein interactions can be gained via a more detailed investigation of the protein domain interactions that mediate the interactions of proteins. Existing high-throughput experimental techniques assay protein-protein interactions, yet they do not provide any direct information on the interactions among domains. Inferences concerning the latter can be made by analysis of the domain composition of a set of proteins and their interaction map. This inference problem is non-trivial, however, due to the high level of noise generally present in experimental data concerning protein-protein interactions. This noise leads to contradictions, i.e. the impossibility of having a pattern of domain interactions compatible with the protein-protein interaction map. RESULTS We formulate the problem of prediction of protein domain interactions in a form that lends itself to the application of belief propagation, a powerful algorithm for such inference problems, which is based on message passing. The input to our algorithm is an interaction map among a set of proteins, and a set of domain assignments to the relevant proteins. The output is a list of probabilities of interaction between each pair of domains. Our method is able to effectively cope with errors in the protein-protein interaction dataset and systematically resolve contradictions. We applied the method to a dataset concerning the budding yeast Saccharomyces cerevisiae and tested the quality of our predictions by cross-validation on this dataset, by comparison with existing computational predictions, and finally with experimentally available domain interactions. Results compare favourably to those by existing algorithms. AVAILABILITY A C language implementation of the algorithm is available upon request.
منابع مشابه
Prediction of Protein Sub-Mitochondria Locations Using Protein Interaction Networks
Background: Prediction of the protein localization is among the most important issues in the bioinformatics that is used for the prediction of the proteins in the cells and organelles such as mitochondria. In this study, several machine learning algorithms are applied for the prediction of the intracellular protein locations. These algorithms use the features extracted from pro...
متن کاملDiscovering Domains Mediating Protein Interactions
Background: Protein-protein interactions do not provide any direct information regarding the domains within the proteins that mediate the interactions. The majority of proteins are multi domain proteins and the interaction between them is often defined by the pairs of their domains. Most of the former studies focus only on interacting domain pairs. However they do not consider the in...
متن کاملStudy of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks
Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...
متن کاملEffects of T208E activating mutation on MARK2 protein structure and dynamics: Modeling and simulation
Microtubule Affinity-Regulating Kinase 2 (MARK2) protein has a substantial role in regulation of vital cellular processes like induction of polarity, regulation of cell junctions, cytoskeleton structure and cell differentiation. The abnormal function of this protein has been associated with a number of pathological conditions like Alzheimer disease, autism, several carcinomas and development of...
متن کاملConstruction and Analysis of Tissue-Specific Protein-Protein Interaction Networks in Humans
We have studied the changes in protein-protein interaction network of 38 different tissues of the human body. 123 gene expression samples from these tissues were used to construct human protein-protein interaction network. This network is then pruned using the gene expression samples of each tissue to construct different protein-protein interaction networks corresponding to different studied ti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 24 18 شماره
صفحات -
تاریخ انتشار 2008